Skip to contents

Copyright 2022, University of Pittsburgh. All Rights Reserved. License: GPL-2

2 Overview

This document describes our R package, dbGaPCheckup, which implements a series of check, awareness, utility, and reporting functions to help you ensure your scientific data set meets formatting requirements for submission to the National Library of Medicine’s database of Genotypes and Phenotypes (dbGaP).

This vignette was designed to give you a broad overview of the utility of this R package. A complete table of functions and descriptions is shown below. See the Quick Start (dbGaPCheckup) vignette for a brief introduction to the package.

List of function names and types.
Function_Name Function_Type Function_Description
field_check check Checks for dbGaP required fields: variable name (VARNAME), variable description (VARDESC), units (UNITS), and variable value and meaning (VALUES).
pkg_field_check check Checks for package-level required fields: variable type (TYPE), minimum value (MIN), and maximum value (MAX).
dimension_check check Checks that the number of variables match between the data set and data dictionary.
name_check check Checks that variable names match between the data set and data dictionary.
id_check check Checks that the first column of the data set is the primary ID for each participant labeled as SUBJECT_ID, that values contain no illegal characters or padded zeros, and that each participant has an ID.
row_check check Checks for empty or duplicate rows in the data set and data dictionary.
NA_check check Checks for NA values in the data set and, if NA values are present, also checks for an encoded NA value=meaning description.
type_check check If a TYPE field exists, this function checks for any TYPE entries that aren’t allowable per dbGaP instructions.
values_check check Checks for potential errors in the VALUES columns by ensuring (1) required format of VALUE=MEANING (e.g., 0=No or 1=Yes); (2) no leading/trailing spaces near the equals sign (e.g., 0=No vs. 0 = No); (3) all variables of TYPE encoded have VALUES entries; and (4) all variables with VALUES entries are listed as TYPE encoded.
integer_check check Checks for variables that appear to be incorrectly listed as TYPE integer.
decimal_check check Checks for variables that appear to be incorrectly listed as TYPE decimal.
misc_format_check check Checks miscellaneous dbGaP formatting requirements to ensure (1) no empty variable names; (2) no duplicate variable names; (3) variable names do not contain “dbgap”; (4) there are no duplicate column names in the dictionary; and (5) column names falling after VALUES column are unnamed.
description_check check Checks for unique and non-missing descriptions (VARDESC) for every variable in the data dictionary.
minmax_check check Checks for variables that have values exceeding the listed MIN or MAX.
missing_value_check check Checks for variables that have non-encoded missing value codes.
complete_check bulk check Runs the entire workflow (field_check, pkg_field_check, dimension_check, name_check, id_check, row_check, NA_check, type_check, values_check, integer_check, decimal_check, misc_format_check, description_check, minmax_check, and missing_value_check).
add_missing_fields utility Adds additional fields required by this package including variable type (‘TYPE’), minimum value (‘MIN’), and maximum value (‘MAX’).
name_correct utility Updates the data set so variable names match those listed in the data dictionary.
reorder_dictionary utility Reorders the data dictionary to match the data set.
reorder_data utility Reorders the data set to match the data dictionary.
id_first_data utility Reorders the data set so that SUBJECT_ID comes first.
id_first_dict utility Reorders the data dictionary so that SUBJECT_ID comes first.
label_data utility, awareness Adds non-missing information from the data dictionary as attributes to the data.
value_meaning_table utility, awareness Generates a value-meaning table by parsing the VALUES fields.
missingness_summary awareness Summarizes the amount of missingness in the data set.
value_missing_table awareness Checks for consistent usage of encoded values and missing value codes between the data dictionary and the data set.
dictionary_search awareness Facilitates searches of the data dictionary.
check_report bulk check, reporting Generates a user-readable report of the checks run by the complete_check function.
create_report reporting, awareness Generates a textual and graphical report of the selected variables in HTML format.
create_awareness_report reporting, awareness Generates an awareness report, calling missingness_summary and value_missing_table functions.

3 Installation

The package is written in R language.

To install from CRAN, proceed as follows:

install.packages("dbGaPCheckup")

To install the development version from GitHub, proceed as follows:

  1. Install and load the devtools package by issuing these commands:
install.packages("devtools")
library(devtools)
  1. Install and load the dbGaPCheckup by issuing these commands:
install_github("lwheinsberg/dbGaPCheckup/pkg")

If you wish to have this vignette installed and accessible within your R help pages, use this command instead:

install_github("lwheinsberg/dbGaPCheckup/pkg", build_opts = c("--no-resave-data", "--no-manual"), build_vignettes = TRUE)

After the dbGaPCheckup package has been installed, you can view load the package using this command:

and view this vignette using:

browseVignettes("dbGaPCheckup")

4 Data format, file types, and file names

dbGaP has a host of formatting requirements for data set submission.

This package focuses on two required files: the Subject Phenotype data set (DS) and the corresponding Subject Phenotype data dictionary (DD). Brief instructions on setting up the files have been included below.

4.1 Files

Checks that are NOT currently embedded into this package that we want to draw special attention to include:

  1. You may ONLY submit tab-delimited .txt and .xlsx files.
    –> Tab-delimited txt files are preferable for the data set.
    –> Excel (.xlsx) format is preferable for the data dictionary.

  2. File names should NOT contain special characters, spaces, hyphens, brackets, periods, or forward (/) or backward slashes ().
    –> For example, ‘data.set.txt’, ‘data-set.txt’, ‘data set.txt’ are all illegal names, but ‘data_set.txt’ would be OK.

  3. Excel files are only allowed to have one sheet (i.e., no multiple tabs/sheets are allowed).

4.2 Subject Phenotype Data Set (DS)

In brief, the Subject Phenotype data set consists of the study data for participants. In the data set, each row represents a participant, and each column represents a study phenotype variable. The first column in the data set needs to be labeled SUBJECT_ID and contains the unique participant identifier as an integer or string value. Integers should not have zero padding or spaces. Specifically, only the following characters can be included in the ID: English letters, Arabic numerals, period (.), hyphen (-), underscore (_), at symbol (@), and the pound sign (#). Columns falling after SUBJECT_ID will be unique to a given study, but include participant factors such as age, sex, etc. Formatting for an example data set is shown below.

First six lines of an example dbGaP data set.
SUBJECT_ID SAMPLE_ID AGE SEX PREGNANT HEIGHT WEIGHT BMI OBESITY ABD_CIRC HIP_CIRC ABD_SKF SUP_SKF RESIST REACT CUFFSIZE BP_SYSTOLIC BP_DIASTOLIC HTN SMOKING_HX LENGTH_SMOKING_YEARS HEART_RATE PHYSICAL_ACTIVITY HX_DM HX_STROKE HX_ANXIETY HX_DEPRESSION SOCIAL_SUPPORT PERCEIVED_CONFLICT PERCEIVED_HEALTH
1 1001 33 0 -4444 163.5000 54.4 20.34995 0 116.08677 119.2750 28 23 340 40 0 120 80 0 0 -4444.0 50 360 0 0 1 1 1 25 10
2 1002 45 1 0 159.3369 93.2 36.70990 1 110.39444 115.8551 24 27 354 45 3 110 60 0 -9999 -4444.0 54 0 1 0 0 0 5 25 4
3 1003 34 0 -4444 185.0000 95.0 27.75749 0 104.29832 104.4375 29 25 358 55 1 106 50 0 1 1.5 75 100 -9999 0 -9999 -9999 4 24 8
4 -9999 55 0 -4444 171.5000 85.7 29.13752 0 121.77705 118.4763 51 44 389 56 1 158 95 1 0 -4444.0 90 180 1 0 0 0 2 10 5
5 1005 45 0 -4444 180.0000 101.4 31.29630 1 84.14132 104.6367 42 25 356 64 2 169 100 1 1 14.0 85 -9999 1 -9999 0 0 3 5 6
6 1006 46 1 0 -9999.0000 -9999.0 -9999.00000 -9999 -9999.00000 -9999.0000 -9999 -9999 -9999 -9999 0 105 40 0 1 25.0 72 180 0 0 0 0 4 1 7

Other example data sets provided by dbGaP can be found at the NCBI submission guide. See “Example of a Subject Phenotypes DS File” and “6a_SampleAttributes_DS.txt”.

4.3 Subject Phenotype Data Dictionary (DD)

In the Subject Phenotype data dictionary, each row represents a unique variable (that corresponds to columns in the data set), and each column represents information about that variable (see example below). For more detailed data dictionary formatting instructions, visit the NCBI submission guide and see heading “APPENDIX for Data Dictionary (DD) File Descriptions and Specifications”, which includes a table of required and suggested column headers and descriptions, as well as an example file called “6b_SampleAttributes_DD.xlsx”.

First six lines of an example dbGaP data dictionary.
VARNAME VARDESC DOCFILE TYPE UNITS MIN MAX RESOLUTION COMMENT1 COMMENT2 VARIABLE_SOURCE SOURCE_VARIABLE_ID VARIABLE_MAPPING UNIQUEKEY COLLINTERVAL ORDER VALUES …18 …19 …20 …21 …22
SUBJECT_ID Participant ID NA integer NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
SAMPLE_ID Sample ID NA integer, encoded value NA NA NA NA NA NA NA NA NA NA NA NA -9999=missing value NA NA NA NA NA
AGE Age at enrollment NA integer years NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
SEX Sex assigned at birth NA integer, encoded value NA 0 1 NA NA NA NA NA NA NA NA NA 0=male 1=female NA NA NA NA
PREGNANT Pregnancy status at enrollment NA integer, encoded value NA 0 1 NA NA NA NA NA NA NA NA NA 0=no 1=yes -9999=missing value -4444=not applicable, participant assigned male at birth NA NA
HEIGHT Height of participant NA decimal, encoded value cm NA NA NA NA NA NA NA NA NA NA NA -9999=missing value NA NA NA NA NA

Two special data dictionary formatting notes:

  1. The final columns of the data dictionary list all unique values/meanings of all encoded values, one value per cell, of which will vary based on the number of VALUE codes for a specific variable. For example, if your data set contains a variable called SEX in which 0 indicates female and 1 indicates male, these columns are designed to communicate value=meaning (e.g., 0=female). The VALUES header must be the last column header and should appear ONLY in the column above the FIRST encoded value that is listed. The remaining value column header cells should be left blank. (Note that when we read in our example data set with blank column names after VALUES, R automatically fills in the column names with the column number (e.g., ...18, ...19, etc.). This is acceptable for the package level checks, but not allowable for the files that are submitted to dbGaP.)

  2. This package requires several fields beyond those required by the dbGaP formatting requirements to support additional data integrity checks. Specifically, dbGaP requires only that the data dictionary contains the following fields: variable name (VARNAME); variable description (VARDESC); units (UNITS); and variable value and meaning (VALUE). Because this package was designed to perform both dbGaP formatting requirement checks, as well as a series of awareness checks to help you ensure data accuracy, this package also requires that the data dictionary contains the following additional fields: logical minimum (MIN) and logical maximum (MAX) values (allowed to be left blank, but column headers are required) and the data type (e.g., integer, decimal, encoded value, string; TYPE) fields. If your data dictionary does not include these additional fields already, you can simply use the add_missing_fields function to auto fill them (see below).

5 Execution with example runs and interpretation

5.1 Check, utility, and awareness functions

Note that all “check” functions included in our package return an invisible tibble that contains (1) Time (Time stamp); (2) Name (Name of the function); (3) Status (Passed/Failed); (4) Message (A copy of the message the function printed out); and (5) Information (More detailed information about the potential errors identified). This was designed to streamline the complete workflow approach and to return a succinct report back to you via check_report (see below). Note that there are some dependencies between checks (e.g., name_check values_check is dependent upon field_check), so there are pre-checks embedded within many checks.

5.1.1 Example 1

data(ExampleD)

We recommend starting with the check_report function, which includes 15 embedded checks. Note that for all functions, you need to first specify the name of the data dictionary, followed by the name of the data set.

e1_report <- check_report(DD.dict.D, DS.data.D, non.NA.missing.codes=c(-4444, -9999))
#> # A tibble: 15 × 3
#>    Function            Status        Message                                    
#>    <chr>               <chr>         <chr>                                      
#>  1 field_check         Passed        Passed: required fields VARNAME, VARDESC, …
#>  2 pkg_field_check     Failed        ERROR: not all package-level required fiel…
#>  3 dimension_check     Passed        Passed: the variable count matches between…
#>  4 name_check          Passed        Passed: the variable names match between t…
#>  5 id_check            Passed        Passed: All ID variable checks passed.     
#>  6 row_check           Passed        Passed: no blank or duplicate rows detecte…
#>  7 NA_check            Not attempted ERROR: Required pre-check pkg_field_check …
#>  8 type_check          Failed        ERROR: TYPE column not found. Consider usi…
#>  9 values_check        Not attempted ERROR: Required pre-check type_check faile…
#> 10 integer_check       Not attempted ERROR: Required pre-check pkg_field_check …
#> 11 decimal_check       Not attempted ERROR: Required pre-check pkg_field_check …
#> 12 misc_format_check   Passed        Passed: no check-specific formatting issue…
#> 13 description_check   Failed        ERROR: missing and duplicate descriptions …
#> 14 minmax_check        Not attempted ERROR: Required pre-check pkg_field_check …
#> 15 missing_value_check Not attempted ERROR: Required pre-check pkg_field_check …
#> --------------------
#> pkg_field_check: Failed 
#> ERROR: not all package-level required fields are present in the data dictionary. Consider using the add_missing_fields function to auto fill these fields. 
#> $pkg_field_check.Info
#>  TYPE   MIN   MAX 
#> FALSE FALSE FALSE 
#> 
#> --------------------
#> type_check: Failed 
#> ERROR: TYPE column not found. Consider using the add_missing_fields function to autofill TYPE. 
#> $type_check.Info
#> [1] "ERROR: TYPE column not found."
#> 
#> --------------------
#> description_check: Failed 
#> ERROR: missing and duplicate descriptions found in data dictionary. 
#> $description_check.Info
#> # A tibble: 4 × 2
#>   VARNAME  VARDESC              
#>   <chr>    <chr>                
#> 1 PREGNANT NA                   
#> 2 REACT    NA                   
#> 3 HEIGHT   Height of participant
#> 4 WEIGHT   Height of participant
#> 
#> --------------------

In this check, we see that several checks passed (e.g., field_check), some failed (e.g., type_check), and some could not be attempted because a pre-check in the function failed (e.g., missing_value_check).

The check_report output can be examined to better understand the issues at hand. For example, let’s examine the pkg_field_check results more closely. You can call more detailed information for each check using the following commands:

e1_report$Message[2]
#> [1] "ERROR: not all package-level required fields are present in the data dictionary. Consider using the add_missing_fields function to auto fill these fields."
e1_report$Information$pkg_field_check.Info
#>  TYPE   MIN   MAX 
#> FALSE FALSE FALSE

Here, we see that the TYPE, MIN, and MAX columns required for the complete workflow approach in this package are missing. But never fear - we can simply use the add_missing_fields function to add these in!

DD.dict_updated <- add_missing_fields(DD.dict.D, DS.data.D)
#> $Message
#> [1] "CORRECTED ERROR: not all package-level required fields were present in the data dictionary. The missing fields have now been added! TYPE was inferred from the data, and MIN/MAX have been added as empty fields."
#> 
#> $Missing
#> [1] "TYPE" "MIN"  "MAX"

Now that our error has been corrected, let’s return to check_report to further investigate. Don’t forget to call in the updated version of the data dictionary here!

# Note! Don't forget to call in the updated version of the data dictionary here! 
e1_report.v2 <- check_report(DD.dict_updated, DS.data.D, 
                non.NA.missing.codes=c(-4444, -9999)) 
#> # A tibble: 15 × 3
#>    Function            Status Message                                           
#>    <chr>               <chr>  <chr>                                             
#>  1 field_check         Passed Passed: required fields VARNAME, VARDESC, UNITS, …
#>  2 pkg_field_check     Passed Passed: package-level required fields TYPE, MIN, …
#>  3 dimension_check     Passed Passed: the variable count matches between the da…
#>  4 name_check          Passed Passed: the variable names match between the data…
#>  5 id_check            Passed Passed: All ID variable checks passed.            
#>  6 row_check           Passed Passed: no blank or duplicate rows detected in da…
#>  7 NA_check            Passed Passed: no NA values detected in data set.        
#>  8 type_check          Passed Passed: All TYPE entries found are accepted by db…
#>  9 values_check        Passed Passed: all four VALUES checks look good.         
#> 10 integer_check       Passed Passed: all variables listed as TYPE integer appe…
#> 11 decimal_check       Passed Passed: all variables listed as TYPE decimal appe…
#> 12 misc_format_check   Passed Passed: no check-specific formatting issues ident…
#> 13 description_check   Failed ERROR: missing and duplicate descriptions found i…
#> 14 minmax_check        Passed Passed: when provided, all variables are within t…
#> 15 missing_value_check Failed ERROR: some variables have non-encoded missing va…
#> --------------------
#> description_check: Failed 
#> ERROR: missing and duplicate descriptions found in data dictionary. 
#> $description_check.Info
#> # A tibble: 4 × 2
#>   VARNAME  VARDESC              
#>   <chr>    <chr>                
#> 1 PREGNANT NA                   
#> 2 REACT    NA                   
#> 3 HEIGHT   Height of participant
#> 4 WEIGHT   Height of participant
#> 
#> --------------------
#> missing_value_check: Failed 
#> ERROR: some variables have non-encoded missing value codes. 
#> $missing_value_check.Info
#>     VARNAME VALUE MEANING  PASS
#> 16 CUFFSIZE -9999    <NA> FALSE
#> 
#> --------------------

As you can see, now 13 out of 15 checks pass, but the workflow fails at description_check and missing_value_check. Specifically, in description_check we see that variables PREGNANT and REACT were identified as having missing variable descriptions (VARDESC), and variables HEIGHT and WEIGHT incorrectly have identical descriptions. In missing_value_check, we see that the variable CUFFSIZE contains a -9999 encoded value that is not specified in a VALUES column. While we have included several functions that support “quick fixes” (add_missing_fields, name_correct, reorder_dictionary, reorder_data, id_first_data, and id_first_dict), the issues identified here are a bit more complex and study-specific, so would need to be corrected manually in your data dictionary before moving on. For now, we will leave this example and move on to the next one!

5.1.2 Example 2

data(ExampleL)
e2_report <- check_report(DD.dict.L, DS.data.L) 
#> # A tibble: 15 × 3
#>    Function            Status        Message                                    
#>    <chr>               <chr>         <chr>                                      
#>  1 field_check         Passed        Passed: required fields VARNAME, VARDESC, …
#>  2 pkg_field_check     Passed        Passed: package-level required fields TYPE…
#>  3 dimension_check     Passed        Passed: the variable count matches between…
#>  4 name_check          Failed        ERROR: the variable names DO NOT match bet…
#>  5 id_check            Passed        Passed: All ID variable checks passed.     
#>  6 row_check           Passed        Passed: no blank or duplicate rows detecte…
#>  7 NA_check            Not attempted ERROR: Required pre-check name_check faile…
#>  8 type_check          Passed        Passed: All TYPE entries found are accepte…
#>  9 values_check        Failed        ERROR: at least one VALUES check flagged p…
#> 10 integer_check       Not attempted ERROR: Required pre-check name_check faile…
#> 11 decimal_check       Not attempted ERROR: Required pre-check name_check faile…
#> 12 misc_format_check   Failed        ERROR: at least one check failed.          
#> 13 description_check   Failed        ERROR: missing and duplicate descriptions …
#> 14 minmax_check        Not attempted ERROR: Required pre-check name_check faile…
#> 15 missing_value_check Not attempted ERROR: Required pre-check name_check faile…
#> --------------------
#> name_check: Failed 
#> ERROR: the variable names DO NOT match between the data dictionary and the data. If the intention behind the variable names is correct, consider using the name_correct function to automatically rename variables to match. 
#> $name_check.Info
#> # A tibble: 2 × 2
#>   Data                Dict                 
#>   <chr>               <chr>                
#> 1 Data: SMOKING_HX    Dict: SMOKING_HISTORY
#> 2 Data: HX_DEPRESSION Dict: DEPRESSION_HX  
#> 
#> --------------------
#> values_check: Failed 
#> ERROR: at least one VALUES check flagged potentials issues. See Information for more details. 
#> $values_check.Info
#>    column_name values.check            vname                   type
#> 4      VALUES3        FALSE         CUFFSIZE integer, encoded value
#> 6       VALUES        FALSE              HTN integer, encoded value
#> 7       VALUES        FALSE PERCEIVED_HEALTH integer, encoded value
#> 9      VALUES5        FALSE               28 integer, encoded value
#> 10     VALUES4        FALSE               28 integer, encoded value
#> 12     VALUES2        FALSE               16 integer, encoded value
#> 14      VALUES        FALSE           RESIST integer, encoded value
#> 15      VALUES        FALSE        SAMPLE_ID                integer
#> 16      VALUES        FALSE              SEX                integer
#>                                                   problematic_description
#> 4                                                           2 means large
#> 6                                                          0 indicates no
#> 7  Between 1 and 10 with higher values indicating better perceived health
#> 9                                                        5 = a great deal
#> 10                                                        4 = quite a bit
#> 12                                                              1 =medium
#> 14                                                                   <NA>
#> 15                                                    -9999=missing value
#> 16                                                                 0=male
#>                                                                         check
#> 4                  Check 1: Is an equals sign present for all values columns?
#> 6                  Check 1: Is an equals sign present for all values columns?
#> 7                  Check 1: Is an equals sign present for all values columns?
#> 9  Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 10 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 12 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 14  Check 3: Do all variables of TYPE encoded have at least one VALUES entry?
#> 15            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 16            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 
#> --------------------
#> misc_format_check: Failed 
#> ERROR: at least one check failed. 
#> $misc_formatting_check.Info
#> # A tibble: 9 × 6
#>   check.name check.description             check.status details col.name correct
#>   <chr>      <chr>                         <chr>        <lgl>   <chr>    <lgl>  
#> 1 Check 1    Empty variable name check     Passed       NA      NA       NA     
#> 2 Check 2    Duplicate variable name check Passed       NA      NA       NA     
#> 3 Check 3    Check for use of `dbgap` in … Passed       NA      NA       NA     
#> 4 Check 4    Duplicate dictionary column … Passed       NA      NA       NA     
#> 5 Check 5    Column names after `VALUES` … Failed       NA      VALUES2  FALSE  
#> 6 Check 5    Column names after `VALUES` … Failed       NA      VALUES3  FALSE  
#> 7 Check 5    Column names after `VALUES` … Failed       NA      VALUES4  FALSE  
#> 8 Check 5    Column names after `VALUES` … Failed       NA      VALUES5  FALSE  
#> 9 Check 5    Column names after `VALUES` … Failed       NA      VALUES6  FALSE  
#> 
#> --------------------
#> description_check: Failed 
#> ERROR: missing and duplicate descriptions found in data dictionary. 
#> $description_check.Info
#> # A tibble: 2 × 2
#>   VARNAME  VARDESC
#>   <chr>    <chr>  
#> 1 PREGNANT NA     
#> 2 REACT    NA     
#> 
#> --------------------

In example 2, we see that the first three checks (field_check, pkg_field_check, and dimension_check) and several others further down the workflow pass, but the fourth check (name_check) fails. Looking at the check_report output more closely, we see that there are two variables with names that do not match between the data dictionary and data set.

Before we move on to investigate this issue further, please note that we could arrive at the same conclusion using the functions individually (rather than the complete workflow approach implemented in check_report):

field_check(DD.dict.L) # pass
#> $Message
#> [1] "Passed: required fields VARNAME, VARDESC, UNITS, and VALUES present in the data dictionary."
pkg_field_check(DD.dict.L) # pass
#> $Message
#> [1] "Passed: package-level required fields TYPE, MIN, and MAX present in the data dictionary."
dimension_check(DD.dict.L, DS.data.L) # pass
#> $Message
#> [1] "Passed: the variable count matches between the data dictionary and the data."
#> 
#> $Information
#> Variables in dictionary       Variables in data 
#>                      30                      30
name_check(DD.dict.L, DS.data.L) # failed
#> $Message
#> [1] "ERROR: the variable names DO NOT match between the data dictionary and the data. If the intention behind the variable names is correct, consider using the name_correct function to automatically rename variables to match."
#> 
#> $Information
#> # A tibble: 2 × 2
#>   Data                Dict                 
#>   <chr>               <chr>                
#> 1 Data: SMOKING_HX    Dict: SMOKING_HISTORY
#> 2 Data: HX_DEPRESSION Dict: DEPRESSION_HX

In looking more closely at the name_check output, we then see that, while the “intent” between the names match (i.e., “hx” is sometimes used as shorthand for “history”), there are a couple of discrepancies between the data dictionary and data set. Luckily, we have included a “quick fix” for this simple issue as implemented in the name_correct function so that you can continue working through the checks. Specifically, name_correct updates the names in the data set to match the names listed in the data dictionary. Similarly, if the variable names in the data dictionary and data set matched identically, but were in the wrong order, the reorder_dictionary function could be used to create a new version of the data dictionary to match the order presented in the data set (see Example 5)! Back to the example at hand, though – let’s give the name_correct function a try now!

DS.data_updated <- name_correct(DD.dict.L, DS.data.L)
#> $Message
#> [1] "CORRECTED ERROR: the variable names differ between the data dictionary and the data. **ALERT** Renaming variable(s) to match those listed in the data dictionary."
#> 
#> $Information
#> # A tibble: 2 × 3
#>   Data                              Dict                             New.Data   
#>   <chr>                             <chr>                            <chr>      
#> 1 Original data name: SMOKING_HX    Dictionary name: SMOKING_HISTORY New data n…
#> 2 Original data name: HX_DEPRESSION Dictionary name: DEPRESSION_HX   New data n…

Now that our error has been corrected, let’s return to check_report. Similar to above, be sure to call in our updated data set!

# Calling in updated data set
e2_report.v2 <- check_report(DD.dict.L, DS.data_updated,
              non.NA.missing.codes=c(-4444, -9999)) 
#> Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows
#> [3].
#> Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [1].
#> Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [1].
#> # A tibble: 15 × 3
#>    Function            Status Message                                           
#>    <chr>               <chr>  <chr>                                             
#>  1 field_check         Passed Passed: required fields VARNAME, VARDESC, UNITS, …
#>  2 pkg_field_check     Passed Passed: package-level required fields TYPE, MIN, …
#>  3 dimension_check     Passed Passed: the variable count matches between the da…
#>  4 name_check          Passed Passed: the variable names match between the data…
#>  5 id_check            Passed Passed: All ID variable checks passed.            
#>  6 row_check           Passed Passed: no blank or duplicate rows detected in da…
#>  7 NA_check            Passed Passed: no NA values detected in data set.        
#>  8 type_check          Passed Passed: All TYPE entries found are accepted by db…
#>  9 values_check        Failed ERROR: at least one VALUES check flagged potentia…
#> 10 integer_check       Failed ERROR: some variables listed as TYPE integer do n…
#> 11 decimal_check       Failed ERROR: some variables listed as TYPE decimal do n…
#> 12 misc_format_check   Failed ERROR: at least one check failed.                 
#> 13 description_check   Failed ERROR: missing and duplicate descriptions found i…
#> 14 minmax_check        Failed ERROR: some variables have values outside of the …
#> 15 missing_value_check Failed ERROR: some variables have non-encoded missing va…
#> --------------------
#> values_check: Failed 
#> ERROR: at least one VALUES check flagged potentials issues. See Information for more details. 
#> $values_check.Info
#>    column_name values.check            vname                   type
#> 4      VALUES3        FALSE         CUFFSIZE integer, encoded value
#> 6       VALUES        FALSE              HTN integer, encoded value
#> 7       VALUES        FALSE PERCEIVED_HEALTH integer, encoded value
#> 9      VALUES5        FALSE               28 integer, encoded value
#> 10     VALUES4        FALSE               28 integer, encoded value
#> 12     VALUES2        FALSE               16 integer, encoded value
#> 14      VALUES        FALSE           RESIST integer, encoded value
#> 15      VALUES        FALSE        SAMPLE_ID                integer
#> 16      VALUES        FALSE              SEX                integer
#>                                                   problematic_description
#> 4                                                           2 means large
#> 6                                                          0 indicates no
#> 7  Between 1 and 10 with higher values indicating better perceived health
#> 9                                                        5 = a great deal
#> 10                                                        4 = quite a bit
#> 12                                                              1 =medium
#> 14                                                                   <NA>
#> 15                                                    -9999=missing value
#> 16                                                                 0=male
#>                                                                         check
#> 4                  Check 1: Is an equals sign present for all values columns?
#> 6                  Check 1: Is an equals sign present for all values columns?
#> 7                  Check 1: Is an equals sign present for all values columns?
#> 9  Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 10 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 12 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 14  Check 3: Do all variables of TYPE encoded have at least one VALUES entry?
#> 15            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 16            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 
#> --------------------
#> integer_check: Failed 
#> ERROR: some variables listed as TYPE integer do not appear to be integers. 
#> $integer_check.Info
#> [1] "BP_DIASTOLIC"    "SMOKING_HISTORY"
#> 
#> --------------------
#> decimal_check: Failed 
#> ERROR: some variables listed as TYPE decimal do not appear to be decimals. 
#> $decimal_check.Info
#> [1] "ABD_SKF" "SUP_SKF"
#> 
#> --------------------
#> misc_format_check: Failed 
#> ERROR: at least one check failed. 
#> $misc_formatting_check.Info
#> # A tibble: 9 × 6
#>   check.name check.description             check.status details col.name correct
#>   <chr>      <chr>                         <chr>        <lgl>   <chr>    <lgl>  
#> 1 Check 1    Empty variable name check     Passed       NA      NA       NA     
#> 2 Check 2    Duplicate variable name check Passed       NA      NA       NA     
#> 3 Check 3    Check for use of `dbgap` in … Passed       NA      NA       NA     
#> 4 Check 4    Duplicate dictionary column … Passed       NA      NA       NA     
#> 5 Check 5    Column names after `VALUES` … Failed       NA      VALUES2  FALSE  
#> 6 Check 5    Column names after `VALUES` … Failed       NA      VALUES3  FALSE  
#> 7 Check 5    Column names after `VALUES` … Failed       NA      VALUES4  FALSE  
#> 8 Check 5    Column names after `VALUES` … Failed       NA      VALUES5  FALSE  
#> 9 Check 5    Column names after `VALUES` … Failed       NA      VALUES6  FALSE  
#> 
#> --------------------
#> description_check: Failed 
#> ERROR: missing and duplicate descriptions found in data dictionary. 
#> $description_check.Info
#> # A tibble: 2 × 2
#>   VARNAME  VARDESC
#>   <chr>    <chr>  
#> 1 PREGNANT NA     
#> 2 REACT    NA     
#> 
#> --------------------
#> minmax_check: Failed 
#> ERROR: some variables have values outside of the MIN to MAX range. 
#> $minmax_check.Info
#> # A tibble: 1 × 5
#>   Trait              Check ListedMin ListedMax OutOfRangeValues 
#>   <chr>              <lgl>     <dbl>     <dbl> <list>           
#> 1 PERCEIVED_CONFLICT FALSE         1        15 <tibble [11 × 1]>
#> 
#> --------------------
#> missing_value_check: Failed 
#> ERROR: some variables have non-encoded missing value codes. 
#> $missing_value_check.Info
#>     VARNAME VALUE MEANING  PASS
#> 14   RESIST -9999    <NA> FALSE
#> 16 CUFFSIZE -9999    <NA> FALSE
#> 
#> --------------------

We now see that name_check now passes, along with several other functions in the workflow, but we have failed on values_check and several others.

Investigating this check failure further by looking at the check_report output, we see a few issues that, due to the subjectivity and complexity of different data set, will need to be manually corrected before moving on. For the purposes of this tutorial, we will now leave this data set to move on to a new one, but in reality, we would correct this issue and return again to check_report.

5.1.3 Example 3

data(ExampleB)

Again, we will start with the check_report function.

e3_report <- check_report(DD.dict.B, DS.data.B)
#> # A tibble: 15 × 3
#>    Function            Status Message                                           
#>    <chr>               <chr>  <chr>                                             
#>  1 field_check         Passed Passed: required fields VARNAME, VARDESC, UNITS, …
#>  2 pkg_field_check     Passed Passed: package-level required fields TYPE, MIN, …
#>  3 dimension_check     Passed Passed: the variable count matches between the da…
#>  4 name_check          Passed Passed: the variable names match between the data…
#>  5 id_check            Passed Passed: All ID variable checks passed.            
#>  6 row_check           Passed Passed: no blank or duplicate rows detected in da…
#>  7 NA_check            Passed Passed: no NA values detected in data set.        
#>  8 type_check          Passed Passed: All TYPE entries found are accepted by db…
#>  9 values_check        Passed Passed: all four VALUES checks look good.         
#> 10 integer_check       Passed Passed: all variables listed as TYPE integer appe…
#> 11 decimal_check       Passed Passed: all variables listed as TYPE decimal appe…
#> 12 misc_format_check   Passed Passed: no check-specific formatting issues ident…
#> 13 description_check   Passed Passed: unique description present for all variab…
#> 14 minmax_check        Passed Passed: when provided, all variables are within t…
#> 15 missing_value_check Passed Passed: all missing value codes have a correspond…
#> [1] "All 15 checks passed."

In the above chunk, check_report determines that all 15 checks were passed! But ALERT — this is misleading a we forgot to include an important parameter!!!!! Rerunning the check with our missing value codes defined, we now see an issue at missing_value_check, which underscores the importance of specifying missing value codes.

e3_report.v2 <- check_report(DD.dict.B, DS.data.B, non.NA.missing.codes=c(-9999))
#> # A tibble: 15 × 3
#>    Function            Status Message                                           
#>    <chr>               <chr>  <chr>                                             
#>  1 field_check         Passed Passed: required fields VARNAME, VARDESC, UNITS, …
#>  2 pkg_field_check     Passed Passed: package-level required fields TYPE, MIN, …
#>  3 dimension_check     Passed Passed: the variable count matches between the da…
#>  4 name_check          Passed Passed: the variable names match between the data…
#>  5 id_check            Passed Passed: All ID variable checks passed.            
#>  6 row_check           Passed Passed: no blank or duplicate rows detected in da…
#>  7 NA_check            Passed Passed: no NA values detected in data set.        
#>  8 type_check          Passed Passed: All TYPE entries found are accepted by db…
#>  9 values_check        Passed Passed: all four VALUES checks look good.         
#> 10 integer_check       Passed Passed: all variables listed as TYPE integer appe…
#> 11 decimal_check       Passed Passed: all variables listed as TYPE decimal appe…
#> 12 misc_format_check   Passed Passed: no check-specific formatting issues ident…
#> 13 description_check   Passed Passed: unique description present for all variab…
#> 14 minmax_check        Passed Passed: when provided, all variables are within t…
#> 15 missing_value_check Failed ERROR: some variables have non-encoded missing va…
#> --------------------
#> missing_value_check: Failed 
#> ERROR: some variables have non-encoded missing value codes. 
#> $missing_value_check.Info
#>     VARNAME VALUE MEANING  PASS
#> 13 CUFFSIZE -9999    <NA> FALSE
#> 
#> --------------------

If you are not immediately sure what your missing value codes are, you can use our value_meaning_table utility/awareness function.

value_meaning_table(DD.dict.B)
#>                 VARNAME                   TYPE VALUE
#> 2             SAMPLE_ID integer, encoded value -9999
#> 3                   SEX integer, encoded value     0
#> 4                   SEX integer, encoded value     1
#> 5                HEIGHT decimal, encoded value -9999
#> 6                WEIGHT decimal, encoded value -9999
#> 7                   BMI decimal, encoded value -9999
#> 8               OBESITY integer, encoded value     0
#> 9               OBESITY integer, encoded value     1
#> 10              OBESITY integer, encoded value -9999
#> 11             ABD_CIRC decimal, encoded value -9999
#> 12             HIP_CIRC decimal, encoded value -9999
#> 13              ABD_SKF integer, encoded value -9999
#> 14              SUP_SKF integer, encoded value -9999
#> 15               RESIST integer, encoded value -9999
#> 16                REACT integer, encoded value -9999
#> 17             CUFFSIZE integer, encoded value     0
#> 18             CUFFSIZE integer, encoded value     1
#> 19             CUFFSIZE integer, encoded value     2
#> 20             CUFFSIZE integer, encoded value     3
#> 21          BP_SYSTOLIC integer, encoded value -9999
#> 22         BP_DIASTOLIC integer, encoded value -9999
#> 23                  HTN integer, encoded value     0
#> 24                  HTN integer, encoded value     1
#> 25                  HTN integer, encoded value -9999
#> 26           SMOKING_HX integer, encoded value     0
#> 27           SMOKING_HX integer, encoded value     1
#> 28           SMOKING_HX integer, encoded value -9999
#> 29 LENGTH_SMOKING_YEARS decimal, encoded value -9999
#> 30 LENGTH_SMOKING_YEARS decimal, encoded value -4444
#> 31           HEART_RATE integer, encoded value -9999
#> 32    PHYSICAL_ACTIVITY integer, encoded value -9999
#> 33                HX_DM integer, encoded value     0
#> 34                HX_DM integer, encoded value     1
#> 35                HX_DM integer, encoded value -9999
#> 36            HX_STROKE integer, encoded value     0
#> 37            HX_STROKE integer, encoded value     1
#> 38            HX_STROKE integer, encoded value -9999
#> 39           HX_ANXIETY integer, encoded value     0
#> 40           HX_ANXIETY integer, encoded value     1
#> 41           HX_ANXIETY integer, encoded value -9999
#> 42        HX_DEPRESSION integer, encoded value     0
#> 43        HX_DEPRESSION integer, encoded value     1
#> 44        HX_DEPRESSION integer, encoded value -9999
#> 45       SOCIAL_SUPPORT integer, encoded value     1
#> 46       SOCIAL_SUPPORT integer, encoded value     2
#> 47       SOCIAL_SUPPORT integer, encoded value     3
#> 48       SOCIAL_SUPPORT integer, encoded value     4
#> 49       SOCIAL_SUPPORT integer, encoded value     5
#> 50   PERCEIVED_CONFLICT integer, encoded value     1
#> 51   PERCEIVED_CONFLICT integer, encoded value    30
#> 52     PERCEIVED_HEALTH integer, encoded value     1
#> 53     PERCEIVED_HEALTH integer, encoded value    10
#>                                  MEANING
#> 2                          missing value
#> 3                                   male
#> 4                                 female
#> 5                          missing value
#> 6                          missing value
#> 7                          missing value
#> 8                                     no
#> 9                                    yes
#> 10                         missing value
#> 11                         missing value
#> 12                         missing value
#> 13                         missing value
#> 14                         missing value
#> 15                         missing value
#> 16                         missing value
#> 17                                 small
#> 18                                medium
#> 19                                 large
#> 20                           extra large
#> 21                         missing value
#> 22                         missing value
#> 23                                    no
#> 24                                   yes
#> 25                         missing value
#> 26                                    no
#> 27                                   yes
#> 28                         missing value
#> 29                         missing value
#> 30 not applicable, no history of smoking
#> 31                         missing value
#> 32                         missing value
#> 33                                    no
#> 34                                   yes
#> 35                         missing value
#> 36                                    no
#> 37                                   yes
#> 38                         missing value
#> 39                                    no
#> 40                                   yes
#> 41                         missing value
#> 42                                    no
#> 43                                   yes
#> 44                         missing value
#> 45                           very little
#> 46                                little
#> 47                              moderate
#> 48                           quite a bit
#> 49                          a great deal
#> 50       lowest possible social conflict
#> 51      highest possible social conflict
#> 52     poorest possible perceived health
#> 53        best possible perceived health

So here we see that -9999 is a verified missing value code in this example.

5.1.4 Example 4

data(ExampleH)
e4_report <- check_report(DD.dict.H, DS.data.H, non.NA.missing.codes=c(-4444, -9999))
#> # A tibble: 15 × 3
#>    Function            Status Message                                           
#>    <chr>               <chr>  <chr>                                             
#>  1 field_check         Passed Passed: required fields VARNAME, VARDESC, UNITS, …
#>  2 pkg_field_check     Passed Passed: package-level required fields TYPE, MIN, …
#>  3 dimension_check     Passed Passed: the variable count matches between the da…
#>  4 name_check          Passed Passed: the variable names match between the data…
#>  5 id_check            Passed Passed: All ID variable checks passed.            
#>  6 row_check           Passed Passed: no blank or duplicate rows detected in da…
#>  7 NA_check            Passed Passed: no NA values detected in data set.        
#>  8 type_check          Passed Passed: All TYPE entries found are accepted by db…
#>  9 values_check        Passed Passed: all four VALUES checks look good.         
#> 10 integer_check       Failed ERROR: some variables listed as TYPE integer do n…
#> 11 decimal_check       Passed Passed: all variables listed as TYPE decimal appe…
#> 12 misc_format_check   Passed Passed: no check-specific formatting issues ident…
#> 13 description_check   Passed Passed: unique description present for all variab…
#> 14 minmax_check        Passed Passed: when provided, all variables are within t…
#> 15 missing_value_check Passed Passed: all missing value codes have a correspond…
#> --------------------
#> integer_check: Failed 
#> ERROR: some variables listed as TYPE integer do not appear to be integers. 
#> $integer_check.Info
#> [1] "SUP_SKF"
#> 
#> --------------------

Note that in this example, we see an error at integer_check. Let’s investigate this further.

Specifically, we can use the awareness function to grep (i.e., search) for this variable name in the dictionary.

dictionary_search(DD.dict.H, search.term=c("SUP_SKF"), search.column=c("VARNAME"))
#> # A tibble: 1 × 22
#>   VARNAME VARDESC   DOCFILE TYPE  UNITS   MIN   MAX RESOLUTION COMMENT1 COMMENT2
#>   <chr>   <chr>     <lgl>   <chr> <chr> <dbl> <dbl> <lgl>      <lgl>    <lgl>   
#> 1 SUP_SKF Supraili… NA      inte… mm       NA    NA NA         NA       NA      
#> # ℹ 12 more variables: VARIABLE_SOURCE <lgl>, SOURCE_VARIABLE_ID <lgl>,
#> #   VARIABLE_MAPPING <lgl>, UNIQUEKEY <lgl>, COLLINTERVAL <lgl>, ORDER <lgl>,
#> #   VALUES <chr>, ...18 <chr>, ...19 <chr>, ...20 <chr>, ...21 <chr>,
#> #   ...22 <chr>

We can also look at the values in the data set to see that, in fact, there are some values that are decimals (not integers as the dictionary suggests).

table(DS.data.H$SUP_SKF)
#> 
#>  -9999     12     22 23.888     24     25     26     27     28 28.254     29 
#>      3      2      4      1      4     11      4      6      2      1      1 
#>     34     35     36     37     38     39  39.12     40     42     44     45 
#>      4      7      3      2      3      6      1      9      2      6      3 
#>     46     48     51     52 
#>      4      3      2      6

We can also use this awareness function to grep any variables that are described as “skinfold” measurements to evaluate data TYPE across variables.

dictionary_search(DD.dict.H, search.term=c("skinfold"))
#> # A tibble: 2 × 22
#>   VARNAME VARDESC   DOCFILE TYPE  UNITS   MIN   MAX RESOLUTION COMMENT1 COMMENT2
#>   <chr>   <chr>     <lgl>   <chr> <chr> <dbl> <dbl> <lgl>      <lgl>    <lgl>   
#> 1 ABD_SKF Abdomina… NA      inte… mm       NA    NA NA         NA       NA      
#> 2 SUP_SKF Supraili… NA      inte… mm       NA    NA NA         NA       NA      
#> # ℹ 12 more variables: VARIABLE_SOURCE <lgl>, SOURCE_VARIABLE_ID <lgl>,
#> #   VARIABLE_MAPPING <lgl>, UNIQUEKEY <lgl>, COLLINTERVAL <lgl>, ORDER <lgl>,
#> #   VALUES <chr>, ...18 <chr>, ...19 <chr>, ...20 <chr>, ...21 <chr>,
#> #   ...22 <chr>

Above we see that both abdominal and suprailiac skinfold thickness are listed as integers in the data dictionary, and thought to have been measured to the nearest mm.

table(DS.data.H$ABD_SKF)
#> 
#> -9999    14    18    21    22    23    24    25    26    27    28    29    30 
#>     3     1     2     2     1     4    11    22     4     1     6     4     2 
#>    31    32    34    35    36    38    39    40    41    42    45    51    54 
#>     3     2     5     4     5     6     2     1     1     1     1     1     1 
#>    61    65    68 
#>     2     1     1

While ABD_SKF appears to be a true integer, SUP_SKF appears to have some decimal places. This error could be corrected either by listing SUP_SKF as TYPE decimal, or by investigating if the data set has a measurement/recording error.

5.1.5 Example 5

data(ExampleN)
d5_report <- check_report(DD.dict.N, DS.data.N)
#> # A tibble: 15 × 3
#>    Function            Status        Message                                    
#>    <chr>               <chr>         <chr>                                      
#>  1 field_check         Passed        Passed: required fields VARNAME, VARDESC, …
#>  2 pkg_field_check     Passed        Passed: package-level required fields TYPE…
#>  3 dimension_check     Passed        Passed: the variable count matches between…
#>  4 name_check          Failed        ERROR: the variable names match between th…
#>  5 id_check            Passed        Passed: All ID variable checks passed.     
#>  6 row_check           Passed        Passed: no blank or duplicate rows detecte…
#>  7 NA_check            Not attempted ERROR: Required pre-check name_check faile…
#>  8 type_check          Passed        Passed: All TYPE entries found are accepte…
#>  9 values_check        Failed        ERROR: at least one VALUES check flagged p…
#> 10 integer_check       Not attempted ERROR: Required pre-check name_check faile…
#> 11 decimal_check       Not attempted ERROR: Required pre-check name_check faile…
#> 12 misc_format_check   Failed        ERROR: at least one check failed.          
#> 13 description_check   Failed        ERROR: missing and duplicate descriptions …
#> 14 minmax_check        Not attempted ERROR: Required pre-check name_check faile…
#> 15 missing_value_check Not attempted ERROR: Required pre-check name_check faile…
#> --------------------
#> name_check: Failed 
#> ERROR: the variable names match between the data dictionary and the data, but they are in the wrong order. Consider using reorder_dictionary function to automatically reorder the dictionary so that you can continue working through the checks. 
#> $name_check.Info
#> # A tibble: 10 × 2
#>    Data                       Dict                      
#>    <chr>                      <chr>                     
#>  1 Data: ABD_CIRC             Dict: HIP_CIRC            
#>  2 Data: HIP_CIRC             Dict: ABD_SKF             
#>  3 Data: ABD_SKF              Dict: SUP_SKF             
#>  4 Data: SUP_SKF              Dict: ABD_CIRC            
#>  5 Data: BP_DIASTOLIC         Dict: HTN                 
#>  6 Data: HTN                  Dict: SMOKING_HX          
#>  7 Data: SMOKING_HX           Dict: LENGTH_SMOKING_YEARS
#>  8 Data: LENGTH_SMOKING_YEARS Dict: HEART_RATE          
#>  9 Data: HEART_RATE           Dict: PHYSICAL_ACTIVITY   
#> 10 Data: PHYSICAL_ACTIVITY    Dict: BP_DIASTOLIC        
#> 
#> --------------------
#> values_check: Failed 
#> ERROR: at least one VALUES check flagged potentials issues. See Information for more details. 
#> $values_check.Info
#>    column_name values.check            vname                   type
#> 4      VALUES3        FALSE         CUFFSIZE integer, encoded value
#> 6       VALUES        FALSE              HTN integer, encoded value
#> 7       VALUES        FALSE PERCEIVED_HEALTH integer, encoded value
#> 9      VALUES5        FALSE               28 integer, encoded value
#> 10     VALUES4        FALSE               28 integer, encoded value
#> 12     VALUES2        FALSE               16 integer, encoded value
#> 14      VALUES        FALSE           RESIST integer, encoded value
#> 15      VALUES        FALSE        SAMPLE_ID                integer
#> 16      VALUES        FALSE              SEX                integer
#>                                                   problematic_description
#> 4                                                           2 means large
#> 6                                                          0 indicates no
#> 7  Between 1 and 10 with higher values indicating better perceived health
#> 9                                                        5 = a great deal
#> 10                                                        4 = quite a bit
#> 12                                                              1 =medium
#> 14                                                                   <NA>
#> 15                                                    -9999=missing value
#> 16                                                                 0=male
#>                                                                         check
#> 4                  Check 1: Is an equals sign present for all values columns?
#> 6                  Check 1: Is an equals sign present for all values columns?
#> 7                  Check 1: Is an equals sign present for all values columns?
#> 9  Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 10 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 12 Check 2: Are there any leading/trailing spaces near the first equals sign?
#> 14  Check 3: Do all variables of TYPE encoded have at least one VALUES entry?
#> 15            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 16            Check 4: Are all variables with VALUES entries of TYPE encoded?
#> 
#> --------------------
#> misc_format_check: Failed 
#> ERROR: at least one check failed. 
#> $misc_formatting_check.Info
#> # A tibble: 9 × 6
#>   check.name check.description             check.status details col.name correct
#>   <chr>      <chr>                         <chr>        <lgl>   <chr>    <lgl>  
#> 1 Check 1    Empty variable name check     Passed       NA      NA       NA     
#> 2 Check 2    Duplicate variable name check Passed       NA      NA       NA     
#> 3 Check 3    Check for use of `dbgap` in … Passed       NA      NA       NA     
#> 4 Check 4    Duplicate dictionary column … Passed       NA      NA       NA     
#> 5 Check 5    Column names after `VALUES` … Failed       NA      VALUES2  FALSE  
#> 6 Check 5    Column names after `VALUES` … Failed       NA      VALUES3  FALSE  
#> 7 Check 5    Column names after `VALUES` … Failed       NA      VALUES4  FALSE  
#> 8 Check 5    Column names after `VALUES` … Failed       NA      VALUES5  FALSE  
#> 9 Check 5    Column names after `VALUES` … Failed       NA      VALUES6  FALSE  
#> 
#> --------------------
#> description_check: Failed 
#> ERROR: missing and duplicate descriptions found in data dictionary. 
#> $description_check.Info
#> # A tibble: 2 × 2
#>   VARNAME  VARDESC
#>   <chr>    <chr>  
#> 1 PREGNANT NA     
#> 2 REACT    NA     
#> 
#> --------------------

In this example, dbGaPCheckup informs us several issues — let’s focus first on the name_check results. While the variable names match between the data dictionary and the data (in contrast to Example 2), they are in the wrong order. Instead of fixing this issue manually outside of R, we can simply call the reoder_dictionary function as a “quick fix” and run the name_report function to confirm our update works!

DD.dict_updated <- reorder_dictionary(DD.dict.N, DS.data.N)
#> $Message
#> [1] "CORRECTED ERROR: the variable names match between the data dictionary and the data, but they were in the wrong order. ***ALERT**** this function has temporarily reordered the dictionary to match the data so that you can continue working through the checks."
#> 
#> $Information
#> # A tibble: 10 × 3
#>    Data                       Dict                       New.Dict               
#>    <chr>                      <chr>                      <chr>                  
#>  1 Data: ABD_CIRC             Dict: HIP_CIRC             Data: ABD_CIRC         
#>  2 Data: HIP_CIRC             Dict: ABD_SKF              Data: HIP_CIRC         
#>  3 Data: ABD_SKF              Dict: SUP_SKF              Data: ABD_SKF          
#>  4 Data: SUP_SKF              Dict: ABD_CIRC             Data: SUP_SKF          
#>  5 Data: BP_DIASTOLIC         Dict: HTN                  Data: BP_DIASTOLIC     
#>  6 Data: HTN                  Dict: SMOKING_HX           Data: HTN              
#>  7 Data: SMOKING_HX           Dict: LENGTH_SMOKING_YEARS Data: SMOKING_HX       
#>  8 Data: LENGTH_SMOKING_YEARS Dict: HEART_RATE           Data: LENGTH_SMOKING_Y…
#>  9 Data: HEART_RATE           Dict: PHYSICAL_ACTIVITY    Data: HEART_RATE       
#> 10 Data: PHYSICAL_ACTIVITY    Dict: BP_DIASTOLIC         Data: PHYSICAL_ACTIVITY
# Remember to call in the updated data dictionary!
name_check(DD.dict_updated, DS.data.N)
#> $Message
#> [1] "Passed: the variable names match between the data dictionary and the data."
#> 
#> $Information
#> [1] "Variable names matched"

Above, we see that name_check now passes! Moving forward, we could simply return to our check_report workflow to search for other potential issues in finalizing our files for dbGaP submission.

5.1.6 Example 6

data(ExampleA)

As mentioned above, if you prefer, you can also simply run the individual checks that you are interested in rather than taking the complete workflow approach. Note that several package-specific pre-checks are embedded in many of the functions (e.g., integer_check).

id_check(DS.data.A)
#> $Message
#> [1] "Passed: All ID variable checks passed."
#> 
#> $Information
#> # A tibble: 5 × 4
#>   check.name check.description                              check.status details
#>   <chr>      <chr>                                          <chr>        <chr>  
#> 1 Check 1    Column 1 is labeled as 'SUBJECT_ID'.           Passed       The fi…
#> 2 Check 2    'SUBJECT_ID' is a column name in the data set. Passed       'SUBJE…
#> 3 Check 3    'SUBJECT_ID' is a column name in the data set. Passed       No ill…
#> 4 Check 4    No leading zeros detected in 'SUBJECT_ID' col… Passed       No lea…
#> 5 Check 5    No missing values for 'SUBJECT_ID'.            Passed       No mis…
misc_format_check(DD.dict.A, DS.data.A) 
#> $Message
#> [1] "Passed: no check-specific formatting issues identified."
#> 
#> $Information
#> # A tibble: 5 × 4
#>   check.name check.description                           check.status details   
#>   <chr>      <chr>                                       <chr>        <chr>     
#> 1 Check 1    Empty variable name check                   Passed       NA        
#> 2 Check 2    Duplicate variable name check               Passed       NA        
#> 3 Check 3    Check for use of `dbgap` in variable names  Passed       NA        
#> 4 Check 4    Duplicate dictionary column name check      Passed       NA        
#> 5 Check 5    Column names after `VALUES` should be empty Warning      ALERT: Yo…
row_check(DD.dict.A, DS.data.A)
#> $Message
#> [1] "Passed: no blank or duplicate rows detected in data set or data dictionary."
NA_check(DD.dict.A, DS.data.A)
#> $Message
#> [1] "Passed: no NA values detected in data set."
minmax_check(DD.dict.A, DS.data.A)
#> $Message
#> [1] "ERROR: some variables have values outside of the MIN to MAX range."
#> 
#> $Information
#> # A tibble: 1 × 5
#>   Trait    Check ListedMin ListedMax OutOfRangeValues
#>   <chr>    <lgl>     <dbl>     <dbl> <list>          
#> 1 PREGNANT FALSE         0         1 <int [2]>

Above we see that an issue has been discovered at minmax_check. Let’s investigate this further. The approach to view the “out of range values” is a bit cryptic, but it can be done with the following code.

b <- minmax_check(DD.dict.A, DS.data.A)
#> $Message
#> [1] "ERROR: some variables have values outside of the MIN to MAX range."
#> 
#> $Information
#> # A tibble: 1 × 5
#>   Trait    Check ListedMin ListedMax OutOfRangeValues
#>   <chr>    <lgl>     <dbl>     <dbl> <list>          
#> 1 PREGNANT FALSE         0         1 <int [2]>
b$Information[[1]]$OutOfRangeValues
#> [[1]]
#> [1] -4444 -9999

Here we see that we forgot to specify our missing value codes when we ran minmax_check, so they are being flagged as errors. Let’s rerun the command specifying -4444 and -9999 as missing value codes.

minmax_check(DD.dict.A, DS.data.A, non.NA.missing.codes=c(-4444, -9999))
#> $Message
#> [1] "Passed: when provided, all variables are within the MIN to MAX range."

Now we see that our check passed for this data set!

5.2 Reporting functions

We have also created awareness and reporting functions that are not built into the complete workflow approach. These functions generate graphical and textual descriptions and awareness checks of the data in HTML format. These reports are designed to help you catch other potential errors in your data set. Note that the create_report generated is quite long however, so we recommend that you only submit subsets of variables at a time. Specification of missing value codes are also important for effective plotting. The commands are not ran here, as they work best when initiated interactively.

# Functions not run here as they work best when initiated interactively
# Awareness Report (See Appendix A for more details)
create_awareness_report(DD.dict, DS.data, non.NA.missing.codes=c(-9999, -4444),
   output.path= tempdir())
   
# Data Report (See Appendix B for more details)
create_report(DD.dict, DS.data, sex.split=TRUE, sex.name= "SEX",
   start = 3, end = 7, non.NA.missing.codes=c(-9999,-4444),
   output.path= tempdir(), open.html=TRUE)

For more details and to learn more, see the appendices below (create_awareness_report, Appendix A; create_report, Appendix B).

5.3 Label data function

Note that after your data dictionary is fully consistent with your data, you can use the label_data function to convert your data to labelled data, essentially embedding the data dictionary into the data for future use! This function uses Haven labelled data with SPSS style missing data codes to add non-missing information from the data dictionary as attributes to the data.

DS_labelled_data <- label_data(DD.dict.A, DS.data.A, non.NA.missing.codes=c(-9999))
labelled::var_label(DS_labelled_data$SEX)
#> [1] "Sex assigned at birth"
labelled::val_labels(DS_labelled_data$SEX)
#>   male female 
#>      0      1
attributes(DS_labelled_data$SEX)
#> $labels
#>   male female 
#>      0      1 
#> 
#> $label
#> [1] "Sex assigned at birth"
#> 
#> $class
#> [1] "haven_labelled" "vctrs_vctr"     "integer"       
#> 
#> $TYPE
#> [1] "integer, encoded value"
#> 
#> $MIN
#> [1] 0
#> 
#> $MAX
#> [1] 1
labelled::na_values(DS_labelled_data$HX_DEPRESSION)
#> missing value 
#>         -9999

6 Appendix: Reporting functions

As described above, there are a variety of awareness and reporting functions that are not built into the complete workflow approach. The purpose of this appendix is to highlight some of these features using the following example data.

data(ExampleB)

6.1 Appendix A: Awareness Report

Run create_awareness_report, which creates a nice .Rmd version of the below checks. While the output below is nearly identical to that you will see using the create_awareness_report function, for the purposes of this vignette, we have further expanded the annotation to assist in interpretation of the output through an example.

# Not run as works best when run interactively
create_awareness_report(DD.dict, DS.data, non.NA.missing.codes=c(-9999),
   output.path= tempdir())

6.1.1 Missingness Summary

This awareness function summarizes the amount of missingness in the data set.

missingness_summary(DS.data.B, non.NA.missing.codes = c(-9999), threshold = 95)

#> $Message
#> [1] "There are 0 variables with a percent missingness > 95% in your data set."
#> 
#> $threshold_summary
#> [1] missing             percent_missingness
#> <0 rows> (or 0-length row.names)
#> 
#> $full_missingness_summary
#>                      missing percent_missingness
#> SAMPLE_ID                 16                  16
#> SMOKING_HX                 5                   5
#> PHYSICAL_ACTIVITY          4                   4
#> WEIGHT                     3                   3
#> BMI                        3                   3
#> OBESITY                    3                   3
#> ABD_CIRC                   3                   3
#> HIP_CIRC                   3                   3
#> ABD_SKF                    3                   3
#> SUP_SKF                    3                   3
#> RESIST                     3                   3
#> REACT                      3                   3
#> HX_DM                      3                   3
#> HX_STROKE                  3                   3
#> HEIGHT                     2                   2
#> CUFFSIZE                   2                   2
#> BP_SYSTOLIC                2                   2
#> BP_DIASTOLIC               2                   2
#> HTN                        2                   2
#> HX_ANXIETY                 2                   2
#> HX_DEPRESSION              2                   2
#> SUBJECT_ID                 0                   0
#> AGE                        0                   0
#> SEX                        0                   0
#> LENGTH_SMOKING_YEARS       0                   0
#> HEART_RATE                 0                   0
#> SOCIAL_SUPPORT             0                   0
#> PERCEIVED_CONFLICT         0                   0
#> PERCEIVED_HEALTH           0                   0

Above we that there are 0 variables in our example data set that have a percent missingness >95%. Navigating through the output, we also see a complete summary of missingness in our data set, with SAMPLE_ID having the highest % missingness at 16%. Finally we see a histogram plotting missingness across our data set.

6.1.2 Values Missing Tables

In the value_missing_table function, for each variable, we have three sets of possible values:

  1. the set D of all the unique values observed in the data;
  2. the set V of all the values explicitly encoded in the VALUES columns of the data dictionary; and
  3. the set M of the missing value codes defined by the user via the non.NA.missing.codes argument.

This function examines various intersections of these three sets, providing awareness checks about possible issues of concern.

results.list <- value_missing_table(DD.dict.B, DS.data.B, non.NA.missing.codes = c(-9999))
#> $Message
#> [1] "Flag: at least one check flagged."
#> 
#> $Information
#> # A tibble: 7 × 4
#>   check.name                     check.description         check.status details 
#>   <chr>                          <chr>                     <chr>        <named >
#> 1 Check A: In M, Not in D        "All missing value codes… Flag         <tibble>
#> 2 Check B: In V, Not in D        "All value codes are in … Flag         <tibble>
#> 3 Check C: In M, Not in V        "All missing value codes… Flag         <tibble>
#> 4 Check D: In M & in D, not in V "All missing value codes… Flag         <tibble>
#> 5 Check E: V NOT in M, NOT in D  "All value codes no defi… Passed       <chr>   
#> 6 Awareness: NsetD vs. NsetV     "Size of Set D vs size o… Info         <tibble>
#> 7 Awareness: N_DnotM vs. N_VnotM "Size of Set D\\M vs siz… Info         <tibble>
results <- results.list$report
6.1.2.1 Check A: If the user defines a missing value code that is not present in the data (In Set M and Not in Set D).
Table Check A: List of variables for which user-defined missing value code is not present in the data.
VARNAME AllMInD NsetD NsetM NsetDAndSetM MNotInD MInD
SEX FALSE 2 1 0 -9999
LENGTH_SMOKING_YEARS FALSE 12 1 0 -9999
HEART_RATE FALSE 44 1 0 -9999
SOCIAL_SUPPORT FALSE 5 1 0 -9999
PERCEIVED_CONFLICT FALSE 24 1 0 -9999
PERCEIVED_HEALTH FALSE 10 1 0 -9999

The above table lists the variables for which the user-defined missing value code of -9999 is not present in the data. These are not necessarily errors, however, as dbGaPCheckup reads non.NA.missing.codes as “global” missing value codes, even if a specific variable does not contain the code. For example, in the example data set, the SEX variable is complete, containing no missing value codes and only containing encoded values of 0=male, and 1=female, but SEX is flagged in the above variable list since it does not contain a -9999 value. In other words, this variable’s presence in the above list is NOT an issue that we should be concerned about. This function is intended only to bring awareness to potential errors in your data (e.g., perhaps you knew that the sex variable was missing for 5 participants for your specific study.)

Interpretation of table column names:
–> AllMInD: Variable-specific check result communicating if user-defined missing value code(s) are detected in the data set (FALSE=no).
–> NsetD: Number of values (or levels) detected in the data (e.g., in this example, SEX has two levels [0=male, 1=female]).
–> NsetM: Number of missing value codes defined (e.g., in this example, 1 user-defined missing value code [-9999] was defined).
–> NsetDAndSetM: Number of occurrences detected in both the data set and the user-defined missing value code (e.g., here 0 overlap for these variables, but if a second missing value code were defined, we might see a 1 here).
–> MNotInD: User-defined missing value code the function checked for (e.g., in this example, -9999).
–> MInD: Variable-specific number; user-defined missing value codes detected in the data (e.g., in this example, 0).

6.1.2.2 Check B: If a VALUES entry defines an encoded code value, but that value is not present in the data (In Set V and Not in Set D).
Table Check B: List of variables for which a VALUES entry defines an encoded code value, but that value is not present in the data.
VARNAME AllVsInD NsetD NsetV NsetDAndSetV VsNotInD
LENGTH_SMOKING_YEARS FALSE 12 2 1 -9999
HEART_RATE FALSE 44 1 0 -9999

The above table lists variables for which a VALUES entry defines an encoded value (i.e., value=meaning; e.g., 0=male), but that value is not present in the data. While ideally all defined encoded values (i.e., in set V) should be observed in the data (i.e., in set D), it is NOT necessarily an error if one does not.

Interpretation of table column names:
–> AllVsInD: Check result communicating if all parsed VALUES entries were detected in the data set (FALSE=no).
–> NsetD: Number of values (or levels) detected in the data (e.g., in this example, LENGTH_SMOKING_YEARS has 12 unique levels).
–> NsetV: Number of encoded value codes detected (e.g., for this example, LENGTH_SMOKING_YEARS has two encoded values).
–> NsetDAndSetV: Number of occurrences detected in both the data set and the VALUES entries (e.g., for this example, LENGTH_SMOKING_YEARS has one of the two encoded values detected in the data).
–> VsNotInD: Encoded value not detected in the data (e.g., for this example, -9999 was not detected in either variable).

So this awareness check alerts us to two potential errors. Specifically, -9999 is defined as a missing value code for LENGTH_SMOKING_YEARS and HEART_RATE, but this code is not detected in the data itself.

# Smoking 
table(DS.data.B$LENGTH_SMOKING_YEARS)
#> 
#> -4444   0.5   1.5     5    10    14    15    25    44    45    50    52 
#>    84     1     1     1     1     1     3     2     2     1     2     1
dictionary_search(DD.dict.B, search.term=c("LENGTH_SMOKING_YEARS"), search.column=c("VARNAME"))
#> # A tibble: 1 × 21
#>   VARNAME   VARDESC DOCFILE TYPE  UNITS   MIN   MAX RESOLUTION COMMENT1 COMMENT2
#>   <chr>     <chr>   <lgl>   <chr> <chr> <dbl> <dbl> <lgl>      <lgl>    <lgl>   
#> 1 LENGTH_S… How ma… NA      deci… years    NA    NA NA         NA       NA      
#> # ℹ 11 more variables: VARIABLE_SOURCE <lgl>, SOURCE_VARIABLE_ID <lgl>,
#> #   VARIABLE_MAPPING <lgl>, UNIQUEKEY <lgl>, COLLINTERVAL <lgl>, ORDER <lgl>,
#> #   VALUES <chr>, ...18 <chr>, ...19 <chr>, ...20 <chr>, ...21 <chr>

# Heart rate 
table(DS.data.B$HEART_RATE)
#> 
#>  38  45  46  47  48  49  50  52  54  55  56  57  58  59  60  64  65  67  68  72 
#>   1   5   1   1   2   1   1   2   2   1   3   1   5   1   1   1   8   1   2   2 
#>  73  74  75  76  78  79  82  83  85  86  90  91  95  96  98 100 105 107 110 113 
#>   1   1   9   3   1   1   1   1   9   2   2   1  13   1   1   1   1   1   3   1 
#> 114 115 125 135 
#>   1   1   1   1
dictionary_search(DD.dict.B, search.term=c("HEART_RATE"), search.column=c("VARNAME"))
#> # A tibble: 1 × 21
#>   VARNAME   VARDESC DOCFILE TYPE  UNITS   MIN   MAX RESOLUTION COMMENT1 COMMENT2
#>   <chr>     <chr>   <lgl>   <chr> <chr> <dbl> <dbl> <lgl>      <lgl>    <lgl>   
#> 1 HEART_RA… Heart … NA      inte… beat…    NA    NA NA         NA       NA      
#> # ℹ 11 more variables: VARIABLE_SOURCE <lgl>, SOURCE_VARIABLE_ID <lgl>,
#> #   VARIABLE_MAPPING <lgl>, UNIQUEKEY <lgl>, COLLINTERVAL <lgl>, ORDER <lgl>,
#> #   VALUES <chr>, ...18 <chr>, ...19 <chr>, ...20 <chr>, ...21 <chr>

Looking at this more closely, we see a missing value code of -4444, not -9999, is being used for LENGTH_SMOKING_YEARS, and HEART_RATE is a complete variable with no missing data. -9999 could be removed as a VALUES entry for those variables and -4444 should added as a non.NA.missing.value.code for this function and example data set.

6.1.2.3 Check C: If the user defines a missing value code that is not defined in a VALUES entry (In Set M and Not in Set V).
Table Check C: List of variables for which user-defined missing value code(s) are not defined in a VALUES entry.
VARNAME AllSetMInSetV NsetV NsetM NsetMAndSetV SetMsNotInSetV
SEX FALSE 2 1 0 -9999
CUFFSIZE FALSE 4 1 0 -9999
SOCIAL_SUPPORT FALSE 5 1 0 -9999
PERCEIVED_CONFLICT FALSE 2 1 0 -9999
PERCEIVED_HEALTH FALSE 2 1 0 -9999

Interpretation of table column names:
–> AllSetMInSetV: Variable-specific check result communicating if user-defined missing value code(s) are detected as a VALUES entry (FALSE=no).
–> NsetV: Number of encoded value codes detected (e.g., in this example, SEX has two levels [0=male, 1=female]).
–> NsetM: Number of missing value codes defined (e.g., in this example, 1 user-defined missing value code [-9999] was defined).
–> NsetMAndSetD: Number of occurrences detected in both the user-defined missing value code and data set.
–> SetMsNotInSetV: Missing value code defined that was not detected in the VALUES entries (e.g., here -9999).

6.1.2.4 Check D: If a user-defined missing value code is present in the data for a given variable, but that variable does not have a corresponding VALUES entry (M in Set D and Not in Set V).
Table Check D: List of variables for which a user-defined missing value code is present in the data for a given variable, but that variable does not have a corresponding VALUES entry.
VARNAME All_MInSetD_InSetV setMInDNotInV
CUFFSIZE FALSE -9999

Interpretation of table column names:
–> All_MInSetD_InSetV: Variable-specific check result communicating if user-defined missing value code(s) are detected in the data for a given variable, but that variable does not have a corresponding VALUES entry (FALSE=no).
–> setMInDNotInV: Encoded value codes detected in the data but not in a corresponding VALUES entry.

Note that this check identified a true error! Specifically CUFFSIZE has a missing value code in the data, -9999, that has not been defined as an encoded value in the VALUES columns. (Funny enough, this was NOT intentional on our part when creating this synthetic data set! Thank you dbGaPCheckup!)

6.1.2.5 Check E: If a VALUES entry is NOT defined as a missing value code AND is NOT identified in the data. ((Set V values that are NOT in Set M) that are NOT in Set D).
Table Check E: List of variables for which a VALUES entry is NOT defined as a missing value code AND is NOT identified in the data
x
Passed

In our example here, all VALUES entries that are NOT defined as missing values codes are listed in the data - so our check passes.

However, if there were issues, interpretation of table column names would be as follows:
–> All_VNotInM_NotInD: Variable-specific check result communicating if encoded values that are NOT defined as a missing value code are detected in the data (FALSE=no).
–> setVNotInM_NotInD: Encoded value codes detected as a VALUES entry but NOT listed as a missing value code and NOT detected in the data.

6.2 Appendix B: Data Report

Next we can run create_report, which generates a textual and graphical report of the selected variables in HTML format which will optionally open the report in a web browser. This awareness report is designed to help you catch other potential errors in your data set. Note that the report generated is quite long however, so we recommend that you only submit subsets of variables at a time. In the example below, for speed of rendering, we create the report for variables only in columns 3 through 6. Note that there is an option to plot/report the data split by sex if desired. Specification of missing value codes are also important for effective plotting.

Again, the code below generates a nearly identical output to the create_report function, with some additional annotation added here for the purposes of this vignette and ease of interpretation.

# Not run as works best when run interactively
create_report(DD.dict, DS.data, sex.split=TRUE, sex.name= "SEX",
   start = 3, end = 6, non.NA.missing.codes=c(-9999,-4444),
   output.path= tempdir(), open.html=TRUE)

6.2.1 Summary and plots

#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
dat_function_selected(DS.data.B, DD.dict.B, sex.split = TRUE, sex.name = "SEX", start = 3, end = 6, dataset.na=dataset.na, h.level=4)
6.2.1.1 AGE - integer

Check passed: AGE is integer TYPE and all integers

  • AGE has no missing values.

  • AGE has no missing values after mapping missing codes to NA.

6.2.1.2 SEX - integer, encoded value

Check passed: SEX is integer TYPE and all integers

  • SEX has no missing values.

  • SEX has no missing values after mapping missing codes to NA.

6.2.1.3 HEIGHT - decimal, encoded value

  • HEIGHT has no missing values.

  • There are 53 missing values for HEIGHT after mapping missing codes to NA.

6.2.1.4 WEIGHT - decimal, encoded value

  • WEIGHT has no missing values.

  • There are 2 missing values for WEIGHT after mapping missing codes to NA.

Above we see a full report for variables AGE, SEX, HEIGHT, and WEIGHT as well as AGE, HEIGHT, and WEIGHT split by sex. Given the complexity of many data sets, this report was created so that investigators could more easily manually review the data for potential errors (e.g., sex=male appearing in a data of pregnant participants who were all female assigned at birth).

7 Contact information

If you have any questions or comments, please feel free to contact us!

Lacey W. Heinsberg:
Daniel E. Weeks:

Bug reports: https://github.com/lwheinsberg/dbGaPCheckup/issues

8 Acknowledgments

This package was developed with partial support from the National Institutes of Health under award numbers R01HL093093, R01HL133040, and K99HD107030. The eval_function and dat_function functions that form the backbone of the awareness reports were inspired by an elegant 2016 homework answer submitted by Tanbin Rahman in our HUGEN 2070 course ‘Bioinformatics for Human Genetics’. We would also like to thank Nick Moshgat for testing and providing feedback on our package during development.